Using and extending OpenCms
search capabilities

Claus Priisholm
CEO, CodeDroids ApS
www.codedroids.com

Overview over the built-in features
Searching with the default setup
Indexing structured contents
Customizing the indexing

Adding other sources to the mix
Integrating with external search engines
More searching

OpenCms

Lucene

ol
Index

Indexes contents and
properties of VFS
resources

Works on the contents,
not the final HTML page

Flexible definition of
multiple indices

Various fields can be
added to the indices

Automated indexing

Easy to use search API

Indexing contents

- Example page, HTM
codes stripped:

= 4233 characters
- 6 4 1 W O rd S ;J“:smg and ;;::2;5:9 OpenCms search capabi

Track: Technical
Type: Fresentation
Speakers: Claus Priisholm (CodeDroids Aps)

Abstract

] I l | I I I I k I I I I O I I I Many web sites and applications benefits from a good search function. OpenGms uses the highly
acclaimed Lucene full-text search engine and thus provides a solid foundation for full-text searches

Especially in conjunction with structured contents the full-text search engine opens new
possibililies. As of OpenCms 7, it is now easier o deal with application specific indexing. If even

f |] I L] V F a more specific indexing is needed, customized indexing classes can be plugged into the OpenCms
I I framework. Finally, it one need to be able present a search feature against several web

I e I S [] applications and not just OpenCms, this can be achisved by means of intsgrating OpenCms with an
external search engine, whils still maintaining the advantage of contents-awars indexing

In this session we will look at how to configure the built-in indexing in order to take advantage
specific information stored in OpenCms' structured contents.
We will look at an example of how to use a custom-build indexing class to cater for the cases where

the standard configuration possibilities does notcover the requirsd functionality. The example also

|| shows how the specific information stored in the index can be ussd as basis for advanced ssarches
We will also look at the scenario where there is a need to be able to ssarch in not ‘just” files in
OpenCms' virtual file system, we do this by using the Solr Lucene frent-end (Selr is an open source
project that provides a web ssrvice like front-=nd to Lucsne)

The session should give you an idea of how to meet various needs for searching in relation to

OpenGms. Seme basic understanding on how OpenCms deals with indexing and searching will be
u advantageous but not an requirement. The same applies lo understanding the GpsnCms Java AFI
and XML schemas

= Less noise equals better
results

OpenCms Index

Source

/sites/default
/system/galleries/download

xmlpage
xmlcontent
text

pdf

Field configuration

content
< content
description
< property=Description
meta
< property=Title
< property=Keywords
< property=Description

Name, Rebuild, Locale, Project
Sources

Indexer class

VFS resources

Document types
Field configuration

Name, Description
Fields

Indexing properties
Mappings

Setting up an index

Example: Online project (VFS)

// Setting up the search

//

CmsJspActionElement cms = new CmsJspActionElement(...);
CmsSearch search = new CmsSearch();

search.init(cms.getCmsObject());

search.setDisplayPages(5);

search.setMatchesPerPage(10);

search.setIndex("Online project (VFS)");

search.setField(

new String[] { "title", "keywords", "description", "content" }
) ;
search.setQuery(“opencms”); // typically from a request parameter
search.setQueryLength(2);

search.setSearchRoots(new String[] { "/" });
search.setSortOrder(CmsSearch.SORT DEFAULT);

// Printing the result
//
CmsSearchResultList result = search.getSearchResult();
ListIterator iterator = result.listlIterator();
while (iterator.hasNext()) {
CmsSearchResult entry = (CmsSearchResult)iterator.next();
String path = cms.getRequestContext()
.removeSiteRoot(entry.getPath())
out.print("<h3>");
out.print(entry.getTitle());
out.print("");
out.print(" (" + entry.getScore() + ")");
out.println("</h3>");
if(!CmsStringUtil.isEmpty(entry.getDescription())) {
out.println("<p>" + entry.getDescription() + "<p>");
else
out.println("<p>" + entry.getExcerpt() + "<p>");

Example: Basic search page

&> codedroids

“Debugging”

Using Luke to see what
IS really going on

“Out of the box” you have a useful
index for english contents,
just add a search page
using the CmsSearch API.

More than one index

Online/offline index

ndex per site

ndex per locale

ndex for specific resources

More specific indexing

Indexing structured contents
Customized indexing of fields

Add new field configuration or
alter an existing one

Add field(s) to the configuration
Set mapping(s) for the field

Set index to use the field
configuration

Rebuild index
Test with Index search

Structured contents

Example: add a field for Author names

Example of a special value from an xmlcontent file
(line breaks added for readability):

<LocalControlWords>

<! [CDATA]

List l#sport/teams,

List l#sport/teams/football,
List l#sport/teams/handball,
11>

</LocalControlWords>

Subclass one of these classes:

org.opencms.search.documents.A_ CmsVfsDocument
org.opencms.search.documents.CmsDocumentXml|Content

Override either:

| CmsExtractionResult extractContent(CmsObject cms,
CmsResource resource, CmsSearchlndex index))

Document createDocument(CmsObject cms, CmsResource
resource, CmsSearchindex index)

Insert into opencms-search.xml:

Enter class for the appropriate <documenttype>
declarations

public Document createDocument(CmsObject cms,
CmsResource resource,
CmsSearchlndex index)

Document document = super.createDocument(cms, resource, index);
if(resource needs special treatment) {
load and unmarshall the xml file
extract the relevant data
Field f = new Field("myfield”, term,
Field.Store.YES, Field.Index.UN_TOKENIZED));
document.add(f);

}

return document;

<opencms>
<search>

<documenttypes>
<documenttype>
<name>xmicontent</name>
<class>my.new.class</class>
</documenttype>
</documenttypes>

</search>
</opencms>

Indexing sources other than VFS files

“Forcing” non-VFS data into OpenCms'
iIndexes is not an optimal solution

Better to have multiple Lucene indexes
and then build a search frontend for them

For database sources there are solutions
like Compass, Hibernate search and so
forth

Use Lucene's MultiSearcher class

Integrating with external search engine
for flexibility and/or more features

It should ideally work with the contents
not the generated HTML page

Have it traverse your site at regular
intervals (using a crawler — e.g. Nutch)

Better to push contents to it via some
interface when publishing (e.g. Solr)

"Solr is an open source enterprise
search server based on the Lucene
Java search library, with XML/HTTP
APls, caching, replication, and a web
administration interface."

Hook into OpenCms events by
implementing | CmsEventListener

Check out
CmsSearchManager.cmsEvent(CmsEvent)

Add relevant fields to form XML format
and push it to Solr via HTTPClient

Build search interface that sends of
queries Solr and formats the result

A lot of times you need to generate lists
of articles or other documents

Usually you will use OpenCms' collectors
But you can use Lucene as well

The Danish Royal Library modules include
an agent intended for these situations

Generate RSS feeds
Use agents as collectors

Links

Lucene:
lucene.apache.org

Solr:
lucene.apache.org/solr

Royal Library modules:
www.kb.dk/en/kb/it/dup/KBSuite.html

